Developing English Learning Support Robot Service Using Multimodal Teachers' Pedagogy

Hidenao ABE

Department of Information Systems, Faculty of Information and Communications, Bunkyo University(文教大学) hidenao@bunkyo.ac.jp

Research Background & Summary

- Continuing Development of pattern recognition and machine learning algorithm environments through cloud services
 - Performance of image and speech recognition has improved to be on par with human recognition
- Clarification of individual action rule application knowledge (meta-knowledge) through the development of robot services based on task knowledge
- Development of a robot service and class support system based on a multimodal rule base aimed at supporting English classes

Practical Examples of Existing English Learning Support Robots and Services

- Musio (Toda City, Saitama Prefecture, etc.)
 - English learning robot for elementary education
 - Speech practice through voice recognition
 - Teaching materials and pedagogy set and created by the company
- **Torepa** (Private high schools in Kanagawa Prefecture, etc.)
 - English learning service for secondary education
 - Speech practice and problem exercises through voice recognition -> Creation of progress statistics
 - Teaching materials can be created by teachers, pedagogy is handled by

Teachers cannot set theirown pedagogy (questions and follow-ups for learners) or it is left to the teachers

Conversational AI (Large Language Models) vs. "Good" Teachers (Educators)

- Conversational AI based on large language resources
 - Multitask dialogue possible with models like Chat GPT based on GPT models
 - · Generates responses that may include mistakes or nonsense
 - Humans need to detect and correct mistakes (teach the correct answers)
 - Good questions lead to good answers (dialogue AI and learners are equal)
- "Good" Teachers (Educators)
 - Requires appropriate and flexible responses based on <u>correct subject knowledge and pedagogy</u> in classes
 - Enhances learners' abilities through appropriate responses (detects and corrects mistakes) and motivates them
 - Not "Instruction" but "Education"
 - Appropriate and flexible responses based on pedagogy are acquired through research lessons
 and mock lessons
- Teachers (educators) need skills accompanied by meta-knowledge (from the learners' perspective)

Relationship Between Large Language Models in Dialogue Practice and Teachers & Learners

Research Purpose

- Development of a hierarchical multimodal teacher's business rule base description format and input interface
 → Description of user model
- Development of an educational support robot service using a multimodal teacher's business rule base

Related Work

- Evaluation of learning effects through question-and-answer format with robots [Muramoto 2023]
 - Mid-term retention improved through question-and-answer format learning compared to repeating learning (e.g., Audio-Lingual Method)
- Skills required for ICT utilization in dialogue practice (English) [Compton 2009]
 - Skills to utilize ICT itself
 - Skills to handle pedagogy
 - Skills to evaluate the retention of subject content

[Compton2009]Compton, L. K. L. (2009). Preparing language teachers to teach language online: A look at skills, roles, and responsibilities. Computer Assisted Language Learning, 22, 1, 73–99. doi:10.1080/09588220802613831

Previous Work

[Akimoto2018] Momoko Akimoto, Hidenao Abe, Yuko Ikuta, Takashi Morita, and Takahira Yamaguchi: Implementation and Evaluation of Pronunciation Practice in English by Using Interactive Robot and Pedagogic Process Rule Analysis, Proceedings of the Information Education Symposium, No. 26, pp. 185-188 (2018) (In Japanese). [Akimoto2019] 秋本桃子,阿部秀尚,森田武史,山口高平:対話型ロボットサービスにおける教師業務ルール実装の ための基本動作認識システムの開発,人工知能学会第117回知識ベースシステム研究会,2019.

- Extraction of teacher task rules (behavior patterns) in language activities in English classes and evaluation of rules by experts (university teachers in charge of English teacher training courses)
 - Implementation of a robot service for pronunciation correction [Akimoto 2018]
 - Confirmed differences in learner proficiency and the number of applied rules
- Evaluation of basic behavior recognition performance in class environments using speech and image recognition [Akimoto 2019]
 - Speech recognition using cloud services, basic behavior recognition with over 96% accuracy using various traditional machine learning algorithms International Workshop on Educational Artificial

Our Previous Work: Difference of Rule Application according to Learners' Language Levels[Akimoto2018]

Experiment Details:

- Pronunciation practice using the Audio-Lingual Method [Pedagogy]
- Subjects: 9 university students (4 at CEFR A2 level, 5 at B1/B2 level)
- Three rules for evaluation and correction (see table below)
- 12 random sentences at the level of Japanese junior high school students

音声認識結果	処理	判定
文頭から8割以上一致	ほめる:Excellent!	一団
文頭から5割以上一致	もう一度発話指示する:One more time.	途中
2割以上一致(誤3単以 内)	英文を発話する:Repeat after me.	一部

Experiment Results(Right Figure): A correlation is suggested between learners' proficiency and the applied the business rules.

This aligns with the fact that on-site teachers appropriately apply evaluation and correction actions (rules) according to the learners.

Overview of Hierarchical Multimodal Task Rule Base Construction

Description Format of Hierarchical Multimodal Rule Base

- Created a schema in JSON format based on Drools decision tables and rule description format
 - Condition part: when, Conclusion part: then
- Added items corresponding to the language used by users to describe the state of learners, questions, and

```
"rule": {} //Each rule
"basic_information": {} // Basic information for this rule
"student_situation": "Text for explaining student situation"
"example_sentence": "Example sentence expecting student reaction"
"parsing_result": "parsing result of above example sentence"
"when": {} //Conditions of this rule
"word_accuracy": {} // Accuracy of words by speech recognition
"voice_recognition": [] // Conditions for results of speech recognition
"image_recognition": [] // Conditions for results of behavior classification by image
"then" : {} //Reaction for the student answer and behavior
"teacher_behavior": {} //Teacher's original behavior
"action": {} //Robot actions
```

Input Interface for Hierarchical Multimodal Rule Base [Abe2023]

- Target users
 - Japanese-speaking English teachers (middle and high school)
 - Not familiar with the processing results or contents of image recognition, speech recognition, and natural language processing
 - Can describe the state of learners in language
- Two types of interfaces
 - HTML form-based input interface
 - Chat-style input interface
- Programming languages used
 - Interface: HTML/CSS, PHP, Vue.js, Axios
 - Natural language processing: Python (Flask), OpenNLP

システム構成(1):入力フォームベース

System Configuration (1): Form-Based Input

教師ルール入力インターフェース	
Name of Rule:	
Q to Student:	Linguistic Feature: □ 動詞時制の不一致 ~
Parsing Result:	Visual Feature: □ 動作の変化がない ~
Correct Example:	Behavioral Feature: □ 目線が定まらない v
Word Acc (%): 🗌 先頭から 🗸	%正しかったら
Teacher's Action:	Robot's Action: 間違い部分を読み上げる ~
送信	_

- Hierarchical multimodal rule input interface using HTML input forms
 - Text, checkboxes, and dropdown selections using HTML
 - Can grasp the input of items at once
 - Difficult for target users to intuitively understand the selection of responses and states from learners

システム構成(2):チャット風インタ フェース

System Configuration (2): Chat-Style Interface

チャット形式	
sota 始めるにはポタンを押してね! 14:39	
sota 生徒の様子は? 14:39	
	既読 14:39 首を傾げている
sota 例文 14:39	
	既読 14:39 I live in Japan.
sota 正答パターンの使用 14:39	
true false 前に戻る	

- Hierarchical multimodal rule input using chat-style input interface
 - Sequential input of rule contents while receiving information such as text, images, and videos
 - Familiar input interface for target users
 - Can input while illustrating the state of learners with images
- Inferior in listing the entered items

User Model Description Format Corresponding to Hierarchical Multimodal Teacher Task Rule Base

- User model description in JSON format
 - History of applied rules
 - History of the accuracy of responses heard from learners
 - History of speech recognition results
 - History of image recognition results \rightarrow Used for behavior recognition judgment
 - History of behavior recognition results
 - Learner identification information

"user_model": {} //Object for user model, including applied rules
"applied_rules": [], //Applied rule history
"word_accuracy": [], // Speech recognition history
"voice_recognition": [], //History of speech recognition results and natural language processing results
"image_recognition": [], //Student status (face orientation, etc.) using image recognition
"video_recognition": [], //Student behavior recognition results using multiple images
"student_reaction": [] //Student's state when applying rules (when executing action)

English Education Support (Dialogue Practice) Robot Service Using Multimodal Teacher Task Rule Base

音声認識+自然言語処理結果への ルールの適用(動作確認)

Visual Recognition and Applying Rules (with partial example)

Intelligence 2024

Conclusion

- Formulated a description format for hierarchical multimodal rule base and user model description format aimed at supporting English learning
 - Developed an English education support (learning based on dialogue practice) robot service using a hierarchical multimodal rule base
 - Work In Progress state
- Future Works
 - Implementation and evaluation of English education support (learning based on dialogue practice) robot service using a hierarchical multimodal rule base
 - Conducting user evaluations for the two types of input interfaces for multimodal rulebase
 - LLM utilization for supporting education of students who want to be teachers